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1. Introduction

The large-N gauge theories provide fruitful features to both phenomenology and string the-

ory. They are simplified in the large-N limit while preserving essential features of QCD [1].

Additionally, dimensional reductions of ten-dimensional N = 1 super Yang-Mills theory

(matrix model) are expected to provide nonperturbative formulations of superstring the-

ory [2 – 5], and can also be regarded as effective actions of D-branes [6]. Furthermore, their

twisted reduced versions, which we study in this article, can provide a nonperturbative

formulation of the gauge theories on noncommutative spaces (NCYM) [7, 8]. In order to

study the nonperturbative nature of these theories, numerical simulations using lattice reg-

ularizations are quite efficient. (Non-lattice simulations are also applicable for the reduced

models. See references [9, 10] for the recent progress.)

In the large-N limit there is an equivalence between the gauge theory and its zero-

dimensional reduction, which is known as Eguchi-Kawai equivalence [11]. Here, we consider

the SU(N) gauge theory (YM) on D-dimensional periodic lattice with the Wilson’s pla-

quette action

SW = −βN
∑

x

∑

µ6=ν

Tr Uµ(x)Uν(x + µ̂)U †
µ(x + ν̂)U †

ν(x), (1.1)
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where Uµ(x) (µ = 1, . . . ,D) ∈ SU(N) are link variables and β is the inverse of the bare

’t Hooft coupling. In the large-N limit the space-time degrees of freedom can be neglected,

and then this theory can be equivalent to a model defined on a single hyper-cube,

SEK = −βN
∑

µ6=ν

Tr UµUνU
†
µU †

ν , (1.2)

which is called the Eguchi-Kawai model (EK model). The equality was shown by observing

that the Schwinger-Dyson equations for Wilson loops (loop equations) in both theories are

the same. In the EK model the loop equations can naively have open Wilson line terms,

which do not exist in the original gauge theory side due to the gauge invariance. Therefore

we need to assume that the global Z
D
N symmetry

Uµ → eiθµUµ, (1.3)

which eliminates the non-zero expectation value of the open Wilson lines, is not broken

spontaneously. However, soon after the discovery of the equivalence, it was found that the

Z
D
N symmetry is actually broken for D > 2 in the weak coupling region [12]. Although

the naive EK equivalence does not hold, modifications were proposed for this issue. They

are quenched Eguchi-Kawai model (QEK model) [12 – 14] and twisted Eguchi-Kawal model

(TEK model) [15]. Historically, most of the works previously done were based on the TEK

model because this model is theoretically interesting and numerically more practical (and

this model describes the NCYM as mentioned before).

In the TEK model, twisted boundary conditions are imposed and then the Z
D
N sym-

metry is ensured in the weak coupling limit. It is not obvious whether the symmetry is

broken or not in the intermediate coupling region. There is no guarantee for not violating

the symmetry. Numerical simulations in the 1980s, however, suggested that the Z
D
N sym-

metry is not broken throughout the whole coupling region. Then we have believed that

the TEK model actually describes the large-N limit of the gauge theory.

Recently some indication about the Z
D
N symmetry breaking was surprisingly reported

in several context around the TEK model [16 – 19]. The most relevant discussion for the

present article was done by Teper and Vairinhos in [17]1 . They showed that the Z
D
N sym-

metry is really broken in the intermediate coupling region by the Monte-Carlo simulation

for the D = 4 TEK model with the standard twist. Our work in this article is along this

line and we mainly concentrate on investigating locations of the symmetry breaking from

the weak coupling side in (β,N) plane. By the Monte-Carlo simulation we clarify the linear

behavior of critical lattice coupling

βL
c ∼ L2, (1.4)

where βL
c represents critical lattice coupling from the weak coupling side and L is the lattice

size we have considered. This result means that the continuum limit of the planar gauge

1In [18, 19] a similar model with two commutative and two noncommutative dimensions were studied

in the context of NCYM. In this case the instability of ZN preserving vacuum was observed even in a

perturbative calculation. This instability arises due to UV/IR mixing.
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theory cannot be described by the TEK model from the argument of the scaling behavior

around the weak coupling limit. This discussion can be also applied to the NCYM case.

This article is organized as follows. In the next section we review the TEK model

briefly and fix our setup. In section 3 we show the numerical results for the Z
D
N symmetry

breaking of the TEK model and find the scaling behavior (1.4). In section 4 we give

the validation for the numerical result, and also discuss whether the TEK model has a

continuum limit or not.

2. Twisted Eguchi-Kawai model

2.1 Action and Wilson loop

In this study, we treat the D = 4 case. The TEK model [15] is a matrix model defined by

the partition function

ZTEK =

∫ 4
∏

µ=1

dUµ exp(−STEK), (2.1)

with the action

STEK = −βN
∑

µ6=ν

ZµνTr UµUνU
†
µU †

ν , (2.2)

where Uµ and dUµ (µ = 1, 2, 3, 4) are link variables and Haar measure. The phase factors

Zµν are

Zµν = exp (2πinµν/N) , nµν = −nνµ ∈ ZN . (2.3)

The Wilson loop operator also contains the phase Z(C) as

WTEK(C) ≡ Z(C)〈Ŵ (C)〉, (2.4)

where Ŵ (C) is the trace of the product of link variables along a contour C and Z(C) is

the product of Zµν ’s which correspond to the plaquettes in a surface whose boundary is

C. This model is obtained by dimensional reduction of the Wilson’s lattice gauge theory

with the twisted boundary condition. With these definitions, the loop equations in the

TEK model take the same form as those in the ordinary lattice gauge theory if the Z
4
N

symmetry, which we discuss in section 2.3, is not broken.

2.2 Twist prescriptions and classical solutions

In the weak coupling limit, the path-integral is dominated by the configuration which gives

the minimum to the action. This configuration U
(0)
µ = Γµ satisfies the ’t Hooft algebra

ΓµΓν = ZνµΓνΓµ, (2.5)

and is called “twist-eater”. The most popular twist might be the minimal symmetric twist

(standard twist)

nµν =











0 L L L

−L 0 L L

−L −L 0 L

−L −L −L 0











, N = L2. (2.6)
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This twist represents L4 lattice. In order to construct the classical solution for this twist,

it is convenient to use the SL(4, Z) transformation for the coordinates on T
4 [20]. Using

the SL(4, Z) transformation we can always rewrite the nµν in the skew-diagonal form

nµν −→ n′
µν = V T nµνV =











0 L 0 0

−L 0 0 0

0 0 0 L

0 0 −L 0











, (2.7)

where V is a SL(4, Z) transformation matrix. This form makes the construction of the

twist-eater easy. Here we define L × L “shift” matrix ŜL and “clock” matrix ĈL by

ŜL =



















0 1 0 · · · 0
... 0 1

. . .
...

...
. . .

. . . 0

0
. . . 1

1 0 · · · · · · 0



















, ĈL =

















1
Oe2πi/L

e2πi·2/L

. . .

O e2πi(L−1)/L

















, (2.8)

which satisfy the little ’t Hooft algebra

ĈLŜL = e−2πi/LŜLĈL. (2.9)

Using these matrices, the twist-eater configuration for the skew-diagonal form (2.7) is easily

constructed as

Γ1 = ĈL ⊗ l1L, Γ2 = ŜL ⊗ l1L,

Γ3 = l1L ⊗ ĈL, Γ4 = l1L ⊗ ŜL.
(2.10)

From (2.7) we can also construct the twist-eater configuration for the minimal symmetric

twist (2.6) as

Γ1 = ĈL ⊗ l1L, Γ2 = ŜLĈL ⊗ ĈL,

Γ3 = ŜLĈL ⊗ ŜL, Γ4 = ŜL ⊗ l1L.
(2.11)

Although these forms are different only by the coordinate transformation, they can give

different results except the weak coupling limit as seen in next section.

Another kind of the twist we consider in this article is

nµν =











0 mL 0 0

−mL 0 0 0

0 0 0 mL

0 0 −mL 0











, N = mL2 (2.12)

with classical solution

Γ1 = ĈL ⊗ l1L ⊗ l1m, Γ2 = ŜL ⊗ l1L ⊗ l1m,

Γ3 = l1L ⊗ ĈL ⊗ l1m, Γ4 = l1L ⊗ ŜL ⊗ l1m.
(2.13)
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While we write the twist using the skew-diagonal form here, we can always rewrite it in

the symmetric form by the SL(4, Z) transformation. We call this twist “generic twist” in

this article, and the minimal twists (2.6) and (2.7) are particular cases (m = 1) of the

generic twist. As is well known, the TEK model can describe the NCYM theory [7, 8].

Expanding the matrix model around noncommutative tori background, we can obtain

noncommutative U(m) Yang-Mills theory on fuzzy tori. (Note that this interpretation is

possible even at finite-N .) Because fuzzy torus can be used as a regularization of fuzzy

R
4, it is naively possible to give a nonperturbative formulation of the NCYM on fuzzy

R
4 by taking a suitable large-N limit in the TEK model. (See appendix A for details.)

However, we will see later it is not the case because of the Z
4
N symmetry breaking. In the

NCYM interpretation the shift and clock matrices can be regarded as matrix realization

of a fuzzy torus. From this point of view, twist prescription (2.12) provides YM theories

on m-coincident four-dimensional fuzzy tori.

2.3 Z
4
N symmetry

The Z
4
N symmetry plays a crucial role in the Eguchi-Kawai equivalence. Generally, the

YM theory with a periodic boundary condition has a critical size. If we shrink the volume

of the system beyond the critical size, we encounter the center symmetry breaking, which

is just the same as the finite temperature system. In the EK model, which is a single

hyper-cubic model, the critical size corresponds to βc ∼ 0.19 in the lattice coupling. In

the region less than the βc — the strong coupling region — the center symmetry Z
4
N is

maintained. On the other hand, in the region larger than βc — the weak coupling region

— the symmetry is spontaneously broken, and then the EK equivalence does not hold.

The TEK model avoids this problem by imposing the twisted boundary condition on

the system instead of the periodic one. In the weak coupling limit the path integral is

dominated by the vacuum configuration, which is twist-eater configurations, as we already

mentioned. These configurations are invariant under global Z
4
L transformation

Uµ → eiθµUµ, eiθµ ∈ ZL, (2.14)

which is regarded as the U(1)4 symmetry in the large-N limit. As a result, WTEK(C) is

zero if C is an open contour in the weak coupling limit.

A key point is that the solution for this problem is obvious only at the classical level.

That is to say, there is no guarantee to maintain the Z
4
L symmetry if we take into account the

quantum fluctuation. Going away from the weak coupling limit, the configurations fluctuate

around the twist-eater. The situation can be displayed in the eigenvalue distribution of

the link variables. In the weak coupling limit the N eigenvalues distribute regularly and

uniformly on the unit circle in the complex plane, and then they are ZL symmetric. If

we decrease β, the eigenvalues begin to fluctuate around the location of the twist-eater.

If the fluctuation is not too large, the ZL symmetric distribution is maintained. However,

large fluctuation can make the uniform distribution shrink to a point, which corresponds to

Uµ = l1N configuration. In the strong coupling region the distribution is randomly uniform,

and then the symmetry is restored.
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Although there is no guarantee to maintain the Z
4
N symmetry in the intermediate

coupling region, the 1980s numerical simulations suggested that the symmetry was unbro-

ken. And this caused us to believe that the EK equivalence in the TEK model does hold

throughout the whole coupling region.

2.4 Limiting procedure

As is well known, the scaling of the YM lattice theory behaves as β ∼ log a−1 around

the weak coupling limit, where a is the lattice spacing, and which is obtained by one-loop

perturbative calculation of the renormalization group equation. If we wish to construct

the TEK model which corresponds to the YM theory by the EK equivalence, the scaling

of the TEK model should obey that of the YM theory. In the TEK model, the lattice size

L relates to N . (For the twist we consider in this article, the relation is N = mL2.) Then,

the YM system with fixed physical size l = aL can be obtained by the scaling

β ∼ log a−1 ∼ log N. (2.15)

In order to obtain the large-N limit with infinite volume, we should increase β slower than

the scaling (2.15). If it is not the case, the system shrinks to a point.

In the case of the NCYM, the scaling near the weak coupling limit is essentially same

as the YM theory, that is, β ∼ log a−1. (See appendix A.) But if we wish to make the

TEK model corresponding to the NCYM, there is a constraint a2L = al = fixed, which

means that we take a scheme in which the noncommutative parameter θ is fixed. Then,

both the continuum limit and the infinite volume limit are simultaneously taken (double

scaling limit). Regardless of difference of the constraint, the scaling for the NCYM we

should take is the same as that of the ordinary YM (2.15) by the nature of the logarithm

scaling.

3. Z
4
N symmetry breaking in the TEK model

As mentioned in the previous section, the Z
4
N symmetry breaking had not been observed

in the older numerical simulation. However, there are several recent reports which indicate

the symmetry breaking [16, 17, 19]. In [17], the symmetry breaking in the D = 4 SU(N)

TEK model was studied in the case of the standard twist up to N = 144 = 122. The

authors of [17] performed the Monte-Carlo simulation starting both from a randomized

configuration (“hot start”) and from the twist-eater solution (“cold start”). In both cases

the Z
4
N symmetry begins to break at N ≥ 100 = 102. At N = 144 the symmetry breaking

and restoration patterns they observed are

Z
4
N

βH
c−−→ Z

3
N −→ Z

2
N −→ Z

1
N −→ Z

0
N (N = 144, standard, hot start),

Z
4
N ←− Z

3
N ←− Z

2
N ←− Z

1
N ←− Z

0
N

βL
c←−− Z

4
N (N = 144, standard, cold start),

(3.1)

where βH
c and βL

c are the first breaking point for the hot start and that for cold start,

respectively. Note that although there is recovery of the symmetry for the cold start, the

symmetry remains broken for the hot start.
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N L βL
c N L βL

c

100 10 0.3525 ± 0.0025 225 15 0.4575 ± 0.0025

121 11 0.3625 ± 0.0025 256 16 0.4875 ± 0.0025

144 12 0.3775 ± 0.0025 289 17 0.5275 ± 0.0025

169 13 0.3975 ± 0.0025 324 18 0.5675 ± 0.0025

196 14 0.4225 ± 0.0025

Table 1: Critical lattice coupling from the weak coupling side βL
c for the minimal symmetric twist.

In this section we show the results of the numerical simulation for this symmetry

breaking phenomena. In order to argue about the possibility of the continuum and large-

N limiting procedure for this model, we mainly focus on the first breaking point for the

cold start βL
c , which depends on N .2

3.1 Simulation method

In our simulation we use the pseudo-heatbath algorithm. The algorithm is based on [21],

and in each sweep over-relaxation is performed five times after multiplying SU(2) matrices.

The number of sweeps is O(1000) for each β. We scan the symmetry breaking on the

resolution of ∆β = 0.005, and then we always quote the value ±0.0025 as the error due

to the resolution. Note that the breaking points are ambiguous because the breakdown of

the Z
4
N symmetry is a first-order transition. As an order parameter for detecting the Z

4
N

breakdown, we measure the Polyakov lines

Pµ ≡
〈∣

∣

∣

∣

1

N
Tr Uµ

∣

∣

∣

∣

〉

. (3.2)

3.2 Simulation results

Minimal symmetric twist. First of all we treat the minimal symmetric twist (2.6).

This twist is the most standard and is also used in the paper [17]. In our study we only

investigate the first Z
4
N symmetry breaking point from weak coupling limit, that is, βL

c

for this twist. (For more detailed information about the symmetry breaking phenomena,

see [17].) The obtained results are in table 1 and plotted in figure 1. The symmetry

breaking points and patterns (Z4
N

βL
c−−→ Z

3
N for N = 100; Z

4
N

βL
c−−→ Z

0
N for N > 100) are

consistent with the results in [17] up to N = 144. In this work we explore the simulation

for larger N . From figure 1 we can find clear linear dependence of βL
c on N(= L2) for

N & 169. The fitted result in linear function using N ≥ 169 data is

βL
c ∼ 0.0011N + 0.21. (3.3)

A theoretical argument for this linear behavior is discussed in section 4.

2Strictly speaking, the symmetry preserved in the weak coupling region is not Z
4

N but Z
4

L. However, Z
4

L

is sufficient for the Eguchi-Kawai equivalence so we do not dare to distinguish them in this article.
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N ( = L
2
 )

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

β cL

Figure 1: Plot of βL
c versus N for the minimal symmetric twist. Fit line is equation (3.3), which

is obtained using N ≥ 169 data.

Minimal skew-diagonal twist. Twists can be always transformed into the skew-

diagonal form by SL(4, Z) transformation as we mentioned in section 2.2. As it were,

the minimal symmetric twist (2.6) is equivalent to the minimal skew-diagonal twist (2.7)

in the weak coupling limit. However, both forms can represent different features by taking

into account the quantum fluctuation. Actually, the Z
4
N symmetry is already broken at

N = 25. This fact enables us to observe the N -dependence of the critical points easily. Not

only is the symmetry breaking point different from the symmetric form, so is the breaking

and restoration pattern. Figure 2 shows the expectation value of the plaquette (top) and

the Polyakov lines (besides the top) versus β for the cold start at N = 100. For N ≥ 100

we find the Z
4
N symmetry breaking and restoration pattern:

Z
4
N ← Z

3
N ← Z

2
N ← Z

0
N

βL
c←−− Z

4
N (N = 100, minimal skew-diagonal, cold start), (3.4)

which represents a difference from the symmetric form case (3.1). The first breaking

pattern Z
4
N

βL
c−−→ Z

0
N is, however, the same as that in the symmetric twist. (We note

that for N ≤ 81 the first breaking pattern is Z
4
N

βL
c−−→ Z

2
N , which resembles the pattern

Z
4
N

βL
c−−→ Z

3
N at N = 100 for the symmetric form [17].)

Table 2 shows the first breaking points for the cold start βL
c and for the hot start βH

c .

These data are plotted in figure 3 for βL
c and figure 4 for βH

c . Again, we find clear linear

dependence on N for βL
c , as we found for the symmetric form. Additionally, we also find

clear dependence on 1/N for βH
c . The fitted results are

βL
c ∼ 0.0034N + 0.25, (3.5)

βH
c ∼ 2.9

N
+ 0.18, (3.6)
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1

0

0.5

P
2

0

0.5

P
3

0.1 0.2 0.3 0.4 0.5 0.6
β

0

0.5

P
4

strong coupling expansion

weak coupling expansion

ZN
4

ZN
0

ZN
2

ZN
3

ZN
4

Figure 2: Expectation value of the plaquette (top) and the Polyakov line (besides the top) versus

the lattice coupling β for N = 100 with the minimal skew-diagonal twist (cold start). As β is

decreased, the Z
4

N symmetry is broken and restored as Z
4

N ← Z
3

N ← Z
2

N ← Z
0

N

βL

c←−− Z
4

N .

N L βH
c βL

c N L βH
c βL

c

9 3 - - 64 8 0.2225 ± 0.0025 0.4625 ± 0.0025

16 4 - - 81 9 0.2125 ± 0.0025 0.5175 ± 0.0025

25 5 0.2925 ± 0.0025 0.3625 ± 0.0025 100 10 0.2075 ± 0.0025 0.5875 ± 0.0025

36 6 0.2575 ± 0.0025 0.3925 ± 0.0025 121 11 0.2025 ± 0.0025 0.6525 ± 0.0025

49 7 0.2375 ± 0.0025 0.4225 ± 0.0025 144 12 0.1975 ± 0.0025 0.7325 ± 0.0025

Table 2: Critical lattice coupling from the weak coupling side βL
c and from strong coupling side

βH
c for the minimal skew-diagonal twist (m = 1).

where we used only N ≥ 64 data for βL
c , whereas all data are used for βH

c . As N is

increased the βH
c approaches a point 0.190, where the phase transition Z

4
N

βH
c−−→ Z

3
N takes

place in the original EK model. These results suggest that the quantum fluctuation is so

large that the Z
4
N symmetry is broken in exactly the same region as that in the original EK

model. The lines for transitions βL
c and βH

c seem to intersect around the bulk transition

point βB
c ∼ 0.35, which corresponds to N ∼ 20 for the twist considered here. For smaller

values than N ∼ 20, we did not observe a signal of breakdown of the Z
4
N symmetry.

Generic skew-diagonal twist. Here, we show the numerical result of the generic

twist (2.12). For this twist we use the skew-diagonal form because the Z
4
N symmetry

breaking occurs at smaller N than that in the symmetric form, which makes our investi-

gation much easier.

– 9 –
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N ( =L
2
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0.3

0.4
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0.6

0.7

0.8

β cL

Figure 3: Plot of βL
c versus N for the minimal skew-diagonal twist. The fit line is equation (3.5),

which is obtained using N ≥ 64 data.

0 0.01 0.02 0.03 0.04

1/N ( =1/L
2
 )

0.15

0.2

0.25

0.3

β cH

Figure 4: Plot of βH
c versus 1/N for the minimal skew-diagonal twist. The fit line is equation (3.6),

which is obtained using N ≥ 25 data. Extrapolation to 1/N = 0 gives βH
c → 0.18, which is close

to the critical point in the original EK model, β = 0.19.

We measure βL
c for this twist up to m = 4. Table 3 shows the βL

c for m = 2, 3, 4 and

that for m = 1 is presented in table 2. These data are plotted in figure 5. From this figure

we can find that the βL
c for each L are reduced as we increase m, and the dependence

is linear in 1/m. The data at 1/m = 0 in this plot are linearly extrapolated values. An
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m = 2 m = 3 m = 4

L N βL
c N βL

c N βL
c

5 50 0.3525 ± 0.0025 75 0.3475 ± 0.0025 - -

6 72 0.3675 ± 0.0025 108 0.3575 ± 0.0025 144 0.3525 ± 0.0025

7 98 0.3925 ± 0.0025 147 0.3875 ± 0.0025 196 0.3825 ± 0.0025

8 128 0.4375 ± 0.0025 192 0.4275 ± 0.0025 256 0.4225 ± 0.0025

9 162 0.4925 ± 0.0025 243 0.4825 ± 0.0025 324 0.4775 ± 0.0025

10 200 0.5575 ± 0.0025 300 0.5475 ± 0.0025 400 0.5425 ± 0.0025

Table 3: βL
c for the generic skew-diagonal twist (m = 2, 3, 4). See also table 2 for m = 1.

0 0.5 1
1/m

0.3

0.35

0.4

0.45

0.5

0.55

0.6

β cL

L=10

L= 9

L= 8

L= 7

L= 6

L= 5

Figure 5: βL
c versus 1/m for L = 5, · · · , 10. βL

c for m = ∞ is evaluated by extrapolating these

data with straight line.

interesting point is the behavior for the case L = 5. While the Z
4
N symmetry breaking

is observed for m = 1, 2 and 3, it is not seen for m = 4 because the βL
c reaches the bulk

transition point βB
c ∼ 0.35 by increasing m. Figure 6 represents the same data in figure 5,

but the horizon axis is L2. As we have seen in the m = 1 case, the data for L ≥ 8 are well

fitted by the linear function of L2 for each m. From these figures, we find that the data

for L ≥ 8 are well fitted globally by a function:

βL
c ∼ 0.0034L2 +

0.060

m
+ 0.19. (3.7)

4. Discussions

In this section we discuss the numerical results obtained in the previous section and the

validity of taking the large-N and continuum limit for this model.
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Figure 6: Scaling of βL
c for m = 1, 2, 3 and 4. We also include βL

c for m = ∞, which is obtained

by an extrapolation shown in figure 5.

4.1 Theoretical estimation of the Z
4
N symmetry breaking point

In the previous section we showed our numerical results. In particular, we elaborately

investigated βL
c , the first Z

4
N breaking point from the cold start. From our investigation,

we found the clear linear behavior like (3.3), (3.5) and (3.7). These behaviors can be

obtained through the following consideration.

Energy difference between twist-eater Γµ and identity l1N configurations. We

simply assume that the Z
4
N breaking is a transition from twist-eater phase Uµ = Γµ to

identity configuration phase Uµ = l1N . For plainness, we consider Z
4
N

βL
c−−→ Z

0
N type breaking

here. Of course we can treat Z
4
N

βL
c−−→ Z

3
N

βL
c−−→ Z

2
N

βL
c−−→ Z

1
N

βL
c−−→ Z

0
N (cascade) type breaking

at a βL
c , but the obtained behavior is not different from the former type. Firstly, we focus

on the classical energy difference between these configurations. The energy can be easily

calculated from the action (2.2) as

∆S = STEK[Uµ = l1N ] − STEK[Uµ = Γµ]

= βN2
∑

µ6=ν

{

1 − cos

(

2πnµν

N

)}

≃ 2π2β
∑

µ6=ν

n2
µν . (4.1)

For the generic twist, it becomes

∆S =

{

24π2βm2L2 (symmetric form),

8π2βm2L2 (skew-diagonal form).
(4.2)

Note that the symmetric form is roughly three times more stable than the skew-diagonal

form if both twists have equal quantum fluctuations. This is the reason that the Z
4
N
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symmetry breaking for the skew-diagonal form can occur at quite smaller N than that for

the symmetric form, as is observed in our simulation.

Quantum fluctuations and symmetry breaking. Going away from the weak coupling

limit, the system has quantum fluctuations. Here we naively expect that the Z
4
N symmetry

is broken if the fluctuation around twist-eater configuration exceeds the energy difference

∆S. Because the system describes O(N2) interacting gluons, it is natural to assume that

their quantum fluctuations provide O(N2) value to the effective action. For the generic

twist the quantum fluctuation is O(m2L4). Combined with the fact (4.2), we can estimate

the critical point βL
c as

βL
c ∼ L2, (4.3)

which is consistent with the numerical results (3.3), (3.5) and (3.7). In addition we can

explain the difference of the coefficient of L2 in (3.3), (3.5) and (3.7) between the symmetric

and the skew-diagonal form, which is roughly three times different, by the factor in (4.2).

Although the above crude estimation reproduces the linear L2 behavior of βL
c , we

cannot explain the dependence on m. To catch the behavior completely, we need to make

the discussion more sophisticated. However, we do not pursue this issue here because the

m dependence can be negligible at the larger N .

This argument can be applied for other twist prescriptions like taking the twist phase

as exp(iπ(L + 1)/L), which is usually used for describing noncommutative spaces. (See

appendix A.)

4.2 Continuum and large-N limit

We have shown that the linear L2 dependence of the critical point βL
c could be explained

by the theoretical discussion in this section. While our simulation is restricted in the small

N region, we confirm that the behavior must continue to N = ∞ by combining with the

discussion. Then the EK equivalence is valid only in the region β > βL
c ∼ N even in the

weak coupling limit and the large-N limit. As we mentioned in the section 2.4, both the

ordinary YM with fixed physical volume and the NCYM theory with fixed noncommutative

parameter have essentially logarithm scaling (2.15) near the weak coupling limit. Then,

because βL
c grows faster than the logarithm, the EK equivalence does not hold in the

continuum limit.

5. Conclusions

In order to study the nonperturbative nature of the large-N gauge theory by lattice simu-

lations, the large-N reduction is very useful property for saving the computational effort.

In this paper, we studied the phase structure of the TEK model, which has been a major

way to realize the large-N reduction. Contrary to the naive hope in old days, at least

in ordinary twist prescriptions as investigated in this paper, the Z
4
N symmetry is broken

even in the weak coupling region and hence a continuum limit as the planar gauge theory

cannot be described by the TEK model. For the NCYM, the situation is the same. We can

also consider a lot of variation for the twist prescription and the combination of reduced
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and non-reduced dimension. For example, in [18, 19], four-dimensional model with two

commutative and two noncommutative directions was studied using two-dimensional lat-

tice action. However, the Z
4
N symmetry is broken also in this model, and hence we cannot

take a naive continuum limit.

Another way for the reduction is the QEK model, in which the eigenvalues of the

link variables are quenched. The QEK model might have no problem in principle, but its

computational cost is larger than that of the TEK model. Although the TEK and QEK

model are reduced models to a single hyper-cube, recent studies deviate from them. The

contemporary method might be the partial reduction [22]. This work showed that the

large-N reduction is valid above some critical physical size lc. This means that for a lattice

size L the reduction holds below some lattice coupling β(L). In order to take continuum

limits we should avoid the bulk transition point βB
c , causing the condition βB

c < β(L) to

be necessary. That is, there is a lower limitation for the lattice size Lc for the continuum

reduction. In addition, the twist prescription is also applicable to the partial reduction [23].

Due to the twisted boundary condition, the lower limitation Lc can be reduced. Therefore,

combination of the twist prescription and the partial reduction would be quite efficient in

the current situation.

Note also that NCYM on fuzzy R
4 could be realized by using TEK with quotient

conditions [8] which give a periodic condition to eigenvalues and hence quantum fluctuation

is suppressed. Further study in this direction would be important.
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A. Double scaling limit as the noncommutative Yang-Mills theory

The TEK model can be used to formulate gauge theories on noncommutative spaces non-

perturbatively [7, 8, 24]. In this appendix, we give a review for the construction of the

NCYM from the TEK model [7], a discussion for the scaling and some supplemental com-

ments for our analysis.

By taking Uµ = eiaAµ , where a corresponds to the lattice spacing, and expanding the

action of the TEK model (2.2), we have its continuum version

STEK,continuum = − 1

4g2

∑

µ6=ν

Tr ([Aµ, Aν ] − iθµν)2 (A.1)

up to higher order terms in a, where

θµν =
2πnµν

Na2
,

1

2g2
= a4βN. (A.2)
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Then, by expanding the action around a classical solution of (A.1)

A(0)
µ = p̂µ, [p̂µ, p̂ν ] = iθµν , (A.3)

we obtain the U(1) NCYM on fuzzy R
4 as follows. Let us define the “noncommutative

coordinate” x̂µ =
(

θ−1
)µν

p̂ν . Then we have

[x̂µ, x̂ν ] = −i(θ−1)µν . (A.4)

This commutation relation is the same as that of coordinate on fuzzy R
4 with noncommu-

tativity parameter θ, and hence functions of x̂ can be mapped to functions on fuzzy R
4.

More precisely, we have the following mapping rule:

f(x̂) =
∑

k f̃(k)eikx̂ ↔ f(x) =
∑

k f̃(k)eikx,

f(x̂)g(x̂) ↔ f(x) ⋆ g(x),

i[p̂µ, · ] ↔ ∂µ,

Tr ↔
√

det θ
4π2

∫

d4x,

(A.5)

where ⋆ represents the noncommutative star product,

f(x) ⋆ g(x) = f(x) exp

(

− i

2

←
∂ µ(θ−1)µν

→
∂ ν

)

g(x), (A.6)

and we obtain U(1) NCYM action

SU(1)NC = − 1

4g2
NC

∫

d4x Fµν ⋆ Fµν (A.7)

with coupling constant

g2
NC = 4π2g2/

√
det θ. (A.8)

In the same way, by expanding the action (A.1) around A
(0)
µ = p̂µ ⊗ l1m, U(m) NCYM can

be obtained. From (2.13), it is apparent that the generic twist gives the U(m) NCYM.

Intuitively, the vacuum configuration (2.13) describes m-coincident fuzzy tori and fuzzy R
4

is realized as a tangent space.

In order to keep the noncommutative scale θ finite, we should take the double scaling

limit with

a−1 ∼
√

L ∼ N1/4. (A.9)

One-loop beta function for U(m) NCYM is given by [26]3

β1−loop(gNC) = − 2

(4π)2
11

3
mg3

NC + O(g5
NC). (A.10)

Therefore, the ’t Hooft coupling β scales as

β ∼ 1

g2
NC

∼ log N. (A.11)

3Renormalizability of the NCYM is a delicate problem. For example, see [25], in which the renormaliz-

ability is discussed by a perturbation expansion.
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Then, the scaling we should take for the NCYM is just the same as that for the ordinary

YM, and Z
D
N symmetry is broken in the scaling limit. Therefore, fuzzy torus crunches to

a point and hence the fuzzy R
4 cannot be realized.4

Of course, we can also use other twist prescriptions. In order to make the periodicity

of the discretized fuzzy torus correct, we usually take the twist as exp(iπ(L + 1)/L) [8].

Regardless of the difference of the twist, the conclusion might not be altered. Here we

repeat the discussion in section 4.1. In this case, the Z
4
N is likely to break down to Z

4
2. The

difference between potentials in twist-eater and Z
4
2-preserving configurations is

∆S ∼ βN2

{

1 − cos

(

π

L

)}

∼ βm2L2, (A.12)

which is the same order as (4.1). Then the behavior of the critical point βL
c (4.3) is not

changed.
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